Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Med Virol ; 2022 Aug 28.
Article in English | MEDLINE | ID: covidwho-2229042

ABSTRACT

The nature and dynamics of mutations associated with the emergence, spread, and vanishing of SARS-CoV-2 variants causing successive waves are complex. We determined the kinetics of the most common French variant ("Marseille-4") for 10 months since its onset in July 2020. Here, we analyzed and classified into subvariants and lineages 7453 genomes obtained by next-generation sequencing. We identified two subvariants, Marseille-4A, which contains 22 different lineages of at least 50 genomes, and Marseille-4B. Their average lifetime was 4.1 ± 1.4 months, during which 4.1 ± 2.6 mutations accumulated. Growth rate was 0.079 ± 0.045, varying from 0.010 to 0.173. Most of the lineages exhibited a bell-shaped distribution. Several beneficial mutations at unpredicted sites initiated a new outbreak, while the accumulation of other mutations resulted in more viral heterogenicity, increased diversity and vanishing of the lineages. Marseille-4B emerged when the other Marseille-4 lineages vanished. Its ORF8 gene was knocked out by a stop codon, as reported in SARS-CoV-2 of mink and in the Alpha variant. This subvariant was associated with increased hospitalization and death rates, suggesting that ORF8 is a nonvirulence gene. We speculate that the observed heterogenicity of a lineage may predict the end of the outbreak.

2.
Transbound Emerg Dis ; 69(4): e823-e830, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1488270

ABSTRACT

Since the start of the coronavirus disease of 2019 (COVID-19) pandemic, several episodes of human-to-animal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission have been described in different countries. The role of pets, especially domestic dogs, in the COVID-19 epidemiology is highly questionable and needs further investigation. In this study, we report a case of COVID-19 in a French dog living in close contact with its owners who were COVID-19 patients. The dog presented rhinitis and was sampled 1 week after its owners (a man and a woman) were tested positive for COVID-19. The nasal swabs for the dog tested remained positive for SARS-CoV-2 by reverse transcription quantitative real-time PCR (RT-qPCR) 1 month following the first diagnosis. Specific anti-SARS-CoV-2 antibodies were detectable 12 days after the first diagnosis and persisted for at least 5 months as tested using enzyme-linked immunoassay (ELISA) and automated western blotting. The whole-genome sequences from the dog and its owners were 99%-100% identical (with the man and the woman's sequences, respectively) and matched the B.1.160 variant of concern (Marseille-4 variant), the most widespread in France at the time the dog was infected. This study documents the first detection of B.1.160 in pets (a dog) in France, and the first canine genome recovery of the B.1.160 variant of global concern. Moreover, given the enhanced infectivity and transmissibility of the Marseille-4 variant for humans, this case also highlights the risk that pets may potentially play a significant role in SARS-CoV-2 outbreaks and may transmit the infection to humans. We have evidence of human-to-dog transmission of the Marseille-4 variant since the owners were first to be infected. Finally, owners and veterinarians must be vigilent for canine COVID-19 when dogs are presented with respiratory clinical signs.


Subject(s)
COVID-19 , Dog Diseases , Animals , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/veterinary , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Dogs , Female , Humans , Pandemics/veterinary , Real-Time Polymerase Chain Reaction/veterinary , SARS-CoV-2/genetics
3.
Front Med (Lausanne) ; 8: 737602, 2021.
Article in English | MEDLINE | ID: covidwho-1430710

ABSTRACT

Since the start of COVID-19 pandemic the Republic of Djibouti, in the horn of Africa, has experienced two epidemic waves of the virus between April and August 2020 and between February and May 2021. By May 2021, COVID-19 had affected 1.18% of the Djiboutian population and caused 152 deaths. Djibouti hosts several foreign military bases which makes it a potential hot-spot for the introduction of different SARS-CoV-2 strains. We genotyped fifty three viruses that have spread during the two epidemic waves. Next, using spike sequencing of twenty-eight strains and whole genome sequencing of thirteen strains, we found that Nexstrain clades 20A and 20B with a typically European D614G substitution in the spike and a frequent P2633L substitution in nsp16 were the dominant viruses during the first epidemic wave, while the clade 20H South African variants spread during the second wave characterized by an increase in the number of severe forms of COVID-19.

4.
Viruses ; 13(6)2021 05 27.
Article in English | MEDLINE | ID: covidwho-1256662

ABSTRACT

The high sequence identity of the first SARS-CoV-2 samples collected in December 2019 at Wuhan did not foretell the emergence of novel variants in the United Kingdom, North and South America, India, or South Africa that drive the current waves of the pandemic. The viral spike receptor possesses two surface areas of high mutagenic plasticity: the supersite in its N-terminal domain (NTD) that is recognised by all anti-NTD antibodies and its receptor binding domain (RBD) where 17 residues make contact with the human Ace2 protein (angiotensin I converting enzyme 2) and many neutralising antibodies bind. While NTD mutations appear at first glance very diverse, they converge on the structure of the supersite. The mutations within the RBD, on the other hand, hone in on only a small number of key sites (K417, L452, E484, N501) that are allosteric control points enabling spike to escape neutralising antibodies while maintaining or even gaining Ace2-binding activity. The D614G mutation is the hallmark of all variants, as it promotes viral spread by increasing the number of open spike protomers in the homo-trimeric receptor complex. This review discusses the recent spike mutations as well as their evolution.


Subject(s)
COVID-19/virology , Genetic Variation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Binding Sites/genetics , COVID-19/transmission , Evolution, Molecular , Genome, Viral , Humans , Models, Molecular , Mutation , Protein Conformation , Spike Glycoprotein, Coronavirus/chemistry
5.
Int J Infect Dis ; 106: 228-236, 2021 May.
Article in English | MEDLINE | ID: covidwho-1207034

ABSTRACT

BACKGROUND: In Marseille, France, following a first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak in March-May 2020, a second epidemic phase occurred from June, involving 10 new variants. The Marseille-4 variant caused an epidemic that started in August and is still ongoing. METHODS: The 1038 SARS-CoV-2 whole genome sequences obtained in our laboratory by next-generation sequencing with Illumina technology were analysed using Nextclade and nextstrain/ncov pipelines and IQ-TREE. A Marseille-4-specific qPCR assay was implemented. Demographic and clinical features were compared between patients with the Marseille-4 variant and those with earlier strains. RESULTS: Marseille-4 harbours 13 hallmark mutations. One leads to an S477N substitution in the receptor binding domain of the spike protein targeted by current vaccines. Using a specific qPCR, it was observed that Marseille-4 caused 12-100% of SARS-CoV-2 infections in Marseille from September 2020, being involved in 2106 diagnoses. This variant was more frequently associated with hypoxemia than were clade 20A strains before May 2020. It caused a re-infection in 11 patients diagnosed with different SARS-CoV-2 strains before June 2020, suggesting either short-term protective immunity or a lack of cross-immunity. CONCLUSIONS: Marseille-4 should be considered as a major SARS-CoV-2 variant. Its sudden appearance points towards an animal reservoir, possibly mink. The protective role of past exposure and current vaccines against this variant should be evaluated.


Subject(s)
COVID-19/genetics , Genome, Viral , Mutation , SARS-CoV-2/genetics , Whole Genome Sequencing , Animals , COVID-19/virology , Epidemics , France/epidemiology , Humans , Mink/virology , Molecular Epidemiology , Phylogeny , Reinfection/virology
6.
J Clin Virol ; 139: 104814, 2021 06.
Article in English | MEDLINE | ID: covidwho-1174353

ABSTRACT

INTRODUCTION: The SARS-CoV-2 pandemic has been associated with the occurrence since summer 2020 of several viral variants that overlapped or succeeded each other in time. Those of current concern harbor mutations within the spike receptor binding domain (RBD) that may be associated with viral escape to immune responses. In our geographical area a viral variant we named Marseille-4 harbors a S477 N substitution in this RBD. MATERIALS AND METHODS: We aimed to implement an in-house one-step real-time reverse transcription-PCR (qPCR) assay with a hydrolysis probe that specifically detects the SARS-CoV-2 Marseille-4 variant. RESULTS: All 6 cDNA samples from Marseille-4 variant strains identified in our institute by genome next-generation sequencing (NGS) tested positive using our Marseille-4 specific qPCR, whereas all 32 cDNA samples from other variants tested negative. In addition, 39/42 (93 %) respiratory samples identified by NGS as containing a Marseille-4 variant strain and 0/26 samples identified as containing non-Marseille-4 variant strains were positive. Finally, 2018/3960 (51%) patients SARS-CoV-2-diagnosed in our institute, 10/277 (3.6 %) respiratory samples collected in Algeria, and none of 207 respiratory samples collected in Senegal, Morocco, or Lebanon tested positive using our Marseille-4 specific qPCR. DISCUSSION: Our in-house qPCR system was found reliable to detect specifically the Marseille-4 variant and allowed estimating it is involved in about half of our SARS-CoV-2 diagnoses since December 2020. Such approach allows the real-time surveillance of SARS-CoV-2 variants, which is warranted to monitor and assess their epidemiological and clinical characterics based on comprehensive sets of data.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL